Stochastic modeling and performance analysis of multi-altitude LEO satellite networks using cox point processes
DOI:
https://doi.org/10.35335/emod.v17i1.72Keywords:
Cox point processes, LEO satellite networks, Multi-altitude, Performance analysis, Stochastic modelingAbstract
The research focuses on the stochastic modeling and performance analysis of multi-altitude Low Earth Orbit (LEO) satellite networks using Cox point processes. LEO satellite networks have emerged as a promising solution for global connectivity, offering high data rates and low latency. To optimize their performance and resource allocation, accurate modeling and analysis techniques are crucial. This research employs Cox point processes to model the spatial distribution and behavior of satellites at different altitudes within the network. The intensity functions capture the expected number of satellites per unit area at each altitude. Realizations of the Cox point process are generated using Monte Carlo simulations, enabling performance analysis in terms of network connectivity, coverage probability, signal quality, and interference levels. The results provide insights into network behavior and inform network design decisions, including the optimal number of satellites, their altitudes, and their spatial distribution. The research contributes to the advancement of multi-altitude LEO satellite networks, enabling efficient global connectivity and addressing communication needs in various industries and applications
References
Al-Hourani, A. (2021). An analytic approach for modeling the coverage performance of dense satellite networks. IEEE Wireless Communications Letters, 10(4), 897–901.
Al Homssi, B., Al-Hourani, A., Wang, K., Conder, P., Kandeepan, S., Choi, J., Allen, B., & Moores, B. (2022). Next generation mega satellite networks for access equality: Opportunities, challenges, and performance. IEEE Communications Magazine, 60(4), 18–24.
Araguz, C., Bou‐Balust, E., & Alarcón, E. (2018). Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects. Systems Engineering, 21(5), 401–416.
Bai, F., Sadagopan, N., & Helmy, A. (2003). IMPORTANT: A framework to systematically analyze the Impact of Mobility on Performance of RouTing protocols for Adhoc NeTworks. IEEE INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), 2, 825–835.
Bai, T., Vaze, R., & Heath, R. W. (2014). Analysis of blockage effects on urban cellular networks. IEEE Transactions on Wireless Communications, 13(9), 5070–5083.
Chaize, M. (2003). Enhancing the economics of satellite constellations via staged deployment and orbital reconfiguration. Massachusetts Institute of Technology.
Choi, C.-S., & Baccelli, F. (2022). An Analytical Framework for Downlink LEO Satellite Communications based on Cox Point Processes. ArXiv Preprint ArXiv:2212.03549.
Di, B., Song, L., Li, Y., & Poor, H. V. (2019). Ultra-dense LEO: Integration of satellite access networks into 5G and beyond. IEEE Wireless Communications, 26(2), 62–69.
Gao, Y., Yang, S., Wu, S., Wang, M., & Song, X. (2019). Coverage probability analysis for mmWave communication network with ABSF-based interference management by stochastic geometry. IEEE Access, 7, 133572–133582.
Gao, Z., Guo, Q., & Na, Z. (2011). Novel optimized routing algorithm for LEO satellite IP networks. Journal of Systems Engineering and Electronics, 22(6), 917–925.
Hassan, N. U. L., Huang, C., Yuen, C., Ahmad, A., & Zhang, Y. (2020). Dense small satellite networks for modern terrestrial communication systems: Benefits, infrastructure, and technologies. IEEE Wireless Communications, 27(5), 96–103.
Heyman, D. P., & Sobel, M. J. (2004). Stochastic models in operations research: stochastic optimization (Vol. 2). Courier Corporation.
Huang, H., Guo, S., & Wang, K. (2018). Envisioned wireless big data storage for low-earth-orbit satellite-based cloud. IEEE Wireless Communications, 25(1), 26–31.
Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. John Wiley & Sons.
Khisa, S., & Moh, S. (2021). Priority-Aware fast MAC protocol for UAV-assisted industrial IoT systems. IEEE Access, 9, 57089–57106.
Kibria, M. G., Nguyen, K., Villardi, G. P., Liao, W.-S., Ishizu, K., & Kojima, F. (2018). A stochastic geometry analysis of multiconnectivity in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 67(10), 9734–9746.
Kolawole, M. O. (2017). Satellite communication engineering. CRC Press.
Kurt, G. K., Khoshkholgh, M. G., Alfattani, S., Ibrahim, A., Darwish, T. S. J., Alam, M. S., Yanikomeroglu, H., & Yongacoglu, A. (2021). A vision and framework for the high altitude platform station (HAPS) networks of the future. IEEE Communications Surveys & Tutorials, 23(2), 729–779.
Lee, J., Noh, S., Jeong, S., & Lee, N. (2022). Coverage analysis of LEO satellite downlink networks: Orbit geometry dependent approach. ArXiv Preprint ArXiv:2206.09382.
Liu, S., Gao, Z., Wu, Y., Ng, D. W. K., Gao, X., Wong, K.-K., Chatzinotas, S., & Ottersten, B. (2021). LEO satellite constellations for 5G and beyond: How will they reshape vertical domains? IEEE Communications Magazine, 59(7), 30–36.
Lu, X., Salehi, M., Haenggi, M., Hossain, E., & Jiang, H. (2021). Stochastic geometry analysis of spatial-temporal performance in wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 23(4), 2753–2801.
Mirza, M.-Y. M., & Khan, N. M. (2020). G2A Communication Channel Modeling and Characterization Using Confocal Prolates. Wireless Personal Communications, 115(1), 745–787.
Mohammed, A., Mehmood, A., Pavlidou, F.-N., & Mohorcic, M. (2011). The role of high-altitude platforms (HAPs) in the global wireless connectivity. Proceedings of the IEEE, 99(11), 1939–1953.
Moller, J., & Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point processes. CRC press.
Na, Z., Pan, Z., Liu, X., Deng, Z., Gao, Z., & Guo, Q. (2018). Distributed routing strategy based on machine learning for LEO satellite network. Wireless Communications and Mobile Computing, 2018.
Okati, N., & Riihonen, T. (2020). Stochastic analysis of satellite broadband by mega-constellations with inclined LEOs. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 1–6.
Okati, N., Riihonen, T., Korpi, D., Angervuori, I., & Wichman, R. (2020). Downlink coverage and rate analysis of low Earth orbit satellite constellations using stochastic geometry. IEEE Transactions on Communications, 68(8), 5120–5134.
Osoro, O. B., & Oughton, E. J. (2021). A techno-economic framework for satellite networks applied to low earth orbit constellations: Assessing Starlink, OneWeb and Kuiper. IEEE Access, 9, 141611–141625.
Pardini, C., & Anselmo, L. (2020). Environmental sustainability of large satellite constellations in low earth orbit. Acta Astronautica, 170, 27–36.
Percy, T. (2015). Simplified population growth modeling for low earth orbit. The University of Alabama in Huntsville.
Raeisi, M., Bonneu, F., & Gabriel, E. (2020). On spatial and spatio-temporal multi-structure point process models. ArXiv Preprint ArXiv:2003.01962.
Reid, T. G. R., Neish, A. M., Walter, T., & Enge, P. K. (2018). Broadband LEO constellations for navigation. NAVIGATION: Journal of the Institute of Navigation, 65(2), 205–220.
Ren, X., Chen, J., Zhang, X., Schmidt, M., Li, X., & Zhang, J. (2020). Mapping topside ionospheric vertical electron content from multiple LEO satellites at different orbital altitudes. Journal of Geodesy, 94, 1–17.
Saeed, N., Almorad, H., Dahrouj, H., Al-Naffouri, T. Y., Shamma, J. S., & Alouini, M.-S. (2021). Point-to-point communication in integrated satellite-aerial 6G networks: State-of-the-art and future challenges. IEEE Open Journal of the Communications Society, 2, 1505–1525.
Vanelli-Coralli, A., Guidotti, A., Foggi, T., Colavolpe, G., & Montorsi, G. (2020). 5G and Beyond 5G Non-Terrestrial Networks: trends and research challenges. 2020 IEEE 3rd 5G World Forum (5GWF), 163–169.
Wang, J., Li, L., & Zhou, M. (2007). Topological dynamics characterization for LEO satellite networks. Computer Networks, 51(1), 43–53.
Yu, W., Wei, S., Xu, G., Chen, G., Pham, K., Blasch, E. P., & Lu, C. (2013). On effectiveness of routing algorithms for satellite communication networks. Sensors and Systems for Space Applications VI, 8739, 249–256.
Zhang, Y., Wu, Q., Lai, Z., & Li, H. (2022). Enabling low-latency-capable satellite-ground topology for emerging leo satellite networks. IEEE INFOCOM 2022-IEEE Conference on Computer Communications, 1329–1338.
ZHAO, D., WANG, G., LIU, H., & JIA, S. (2022). Performance Analysis and Optimization of Multi-antenna Dense Heterogeneous Network Based on Stochastic Geometry Theory. 电子与信息学报, 44(9), 2986–2993.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Fristi Riandari, Salomo Sijabat, Firta Sari Panjaitan

This work is licensed under a Creative Commons Attribution 4.0 International License.